CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis

نویسندگان

  • Honggui Wang
  • Zenglin Zhang
  • Hongyu Li
  • Xiaoying Zhao
  • Xuanming Liu
  • Michael Ortiz
  • Chentao Lin
  • Bin Liu
چکیده

Branching is an important trait of plant development regulated by environmental signals. Phytochromes in Arabidopsis mediate branching in response to the changes in the red light:far-red light ratio (R:FR), the mechanisms of which are still elusive. Here it is shown that overexpression of CONSTANS-LIKE 7 (COL7) results in an abundant branching phenotype which could be efficiently suppressed by shade or a simulated shade environment (low R:FR). Moreover, col7 mutants develop shorter hypocotyls and COL7 overexpression lines develop longer hypocotyls in comparison with the wild type in low R:FR, indicating that COL7 acts as an enhancer of the shade avoidance response. In shade or transient low R:FR, transcriptional and post-transcriptional expression levels of COL7 are up-regulated and positively associated with rapid mRNA accumulation of PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1), a marker gene of shade avoidance syndrome (SAS). Taken together, the results suggest a dual role for COL7 which promotes branching in high R:FR conditions but enhances SAS in low R:FR conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytochrome B Promotes Branching in Arabidopsis by Suppressing Auxin Signaling1[W][OPEN]

Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced...

متن کامل

Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.

Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced...

متن کامل

Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases.

Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins duri...

متن کامل

A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis.

Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. He...

متن کامل

Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering.

The timing of the floral transition in Arabidopsis (Arabidopsis thaliana) is influenced by a number of environmental signals. Here, we have focused on acceleration of flowering in response to vegetative shade, a condition that is perceived as a decrease in the ratio of red to far-red radiation. We have investigated the contributions of several known flowering-time pathways to this acceleration....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013